首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1311篇
  免费   63篇
  国内免费   272篇
化学   1490篇
晶体学   8篇
力学   2篇
综合类   55篇
数学   1篇
物理学   90篇
  2023年   25篇
  2022年   21篇
  2021年   84篇
  2020年   54篇
  2019年   44篇
  2018年   45篇
  2017年   60篇
  2016年   39篇
  2015年   68篇
  2014年   53篇
  2013年   129篇
  2012年   71篇
  2011年   57篇
  2010年   63篇
  2009年   78篇
  2008年   92篇
  2007年   78篇
  2006年   85篇
  2005年   105篇
  2004年   85篇
  2003年   84篇
  2002年   39篇
  2001年   37篇
  2000年   35篇
  1999年   36篇
  1998年   22篇
  1997年   21篇
  1996年   10篇
  1995年   6篇
  1994年   8篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
排序方式: 共有1646条查询结果,搜索用时 23 毫秒
71.
The present work aimed at research the physic-chemical properties of the interaction of N-decyl-O-chitosan sulfate (an amphiphilic chitosan derivative, C10-OCHS) with cetyltrimetylammonium bromide (CTAB) by the steady-state fluorescent, static/dynamic surface tension, turbidity and transmission electron microscopy (TEM). The results showed that the complex of C10-OCHS/CTAB had high surface activity and lower critical aggregation concentration. Besides, the C10-OCHS/CTAB could self-assemble into various aggregates like irregular spherical aggregates, vesicles or polydisperse aggregates from lower to higher concentrations of CTAB with a mixed C10-OCHS concentration of 200?mg/L.  相似文献   
72.
Glutaraldehyde-crosslinked O-carboxymethyl chitosan (O-CMC)–gum Arabic (GA) coacervates were characterized against coacervation acidity. As the coacervation pH increased from 3.0 to 6.0, the crosslinking degree of the coacervates and its sensitivity to glutaraldehyde concentration variation declined gradually, but the elasticity increased markedly. Crosslinking improved the structure compactness and thermal stability of the coacervates and high coacervation pH favored the increase of the two parameters, but a reverse trend was observed regarding swelling ratio in the simulated gastric fluid. It was concluded that glutaraldehyde-crosslinked O-CMC–GA coacervates with required properties could be tailored by selecting an appropriate complexation acidity.  相似文献   
73.
The miscibility, bioactivity, and antibacterial properties of chitosan/collagen specimens were systematically studied. The specimens were prepared by blending collagen and chitosan with varying deacetylation degrees in solutions; the collagen molecules had been extracted from pigskins using the acid swelling-pepsin digestion method. To understand the miscibility properties of collagen and chitosan molecules, the intrinsic viscosity and differential scanning calorimetry analysis of collagen, chitosan, and collagen/chitosan specimens were performed. The instrinsic viscosity measurements suggested that chitosan and collagen molecules with varying deacetylation degrees were miscible at molecular level for all compositions and degrees of deacetylation of chitosan/collagen mixture solutions prepared in this study. Fourier transform infrared analyses suggested that the percentage of preserved triple helix structures present in collagen molecules in collagen/chitosan specimens decreased with increasing chitosan contents, since the ratios of peak absorbance at 1239 cm?1 of amide III and 1455 cm?1 of C?H bending of collagen/chitosan specimens decreased significantly with increase in their chitosan contents. Abnormally high denaturation temperatures (Td) were observed as the chitosan contents of collagen/chitosan specimens reached 40 wt%, at which Td of collagen molecules was even higher than that of the corresponding pure chitosan molecules with varying deacetylation degrees. The antibacterial activity of collagen/chitosan blends increased consistently with increasing deacetylation degrees and concentrations of chitosan molecules in collagen/chitosan solutions. Possible explanations for these interesting thermal denaturation, antibacterial, and miscibility properties of chitosan/collagen specimens are reported.  相似文献   
74.
75.
The optimal conditions for synthesizing quaternized chitosan (QCS) via microwave irradiation were explored. The microwave temperature, time, power, mole ratio between chitosan and 2,3-epoxypropyltrimethyl ammonium chloride (ETA), volume ratio between isopropanol and water, and pH value of the reaction system were studied to evaluate the effect on the degree of substitution (DS). The structure of QCS was characterized by means of FT-IR, NMR, XPS and XRD. TGA and DTG were used to measure its thermal stability. At last, QCS acted as a reducing and stabilizing agent to greenly synthesize gold nanoparticles without adding any other chemical reagent.  相似文献   
76.
The photoinitiating ability of some sulfur ylides was studied. Diphenylsulfonium bis (methoxycarbony1)methylide (DPSY) could photoinitiate methyl methacrylate and styrene. A free radical mechanism was confirmed by a kinetic study, the inhibiting effect of benzoquinone, and the copolymer composition. From an analysis of the photodecomposition products it is suggested that the phenyl radical generated from the bond fission between the sulfur atom and the phenyl group participates in the initiation of this free radical polymerization. Methylphenylsulfonium bis (methoxycarbonyl) methylide, as well as DPSY, served as a photoinitiator, but dimethylsulfonium bis (methoxycarbony1)methylide did not. The differences are explained based on UV spectra.  相似文献   
77.
Chitosan is a natural based polymer obtained by alkaline deacetylation of chitin, exhibiting excellent properties such as non‐toxicity, biocompatibility and biodegradability. N‐Methylenephenyl phosphonic chitosan (NMPPC) is synthesized from chitosan by reacting with phenyl phosphonic acid using formaldehyde. The NMPPC was characterized by FTIR, 31P‐NMR, X‐ray diffraction, scanning electron microscopy, thermogravimeteric analysis and solubility studies. A significant decrease of molecular weight was observed in the NMPPC. The TGA studies suggested that NMPPC has less thermal stability than chitosan. The X‐ray diffraction analysis showed that NMPPC was amorphous in nature. The solubility property of the polymer was improved after the incorporation of a phenyl phosphonic group.  相似文献   
78.

The grafting of 3‐(trimethoxysilyl)propyl methacrylate (TMSPM) onto chitosan by ceric ion initiation was studied under homogeneous conditions in 2% acetic acid solution. The grafted polymer was characterized by FT‐IR, 1H‐NMR, TGA and XRD and swelling studies. TGA results showed that the incorporation of TMSPM to the chitosan chains decreased the thermal stability of the grafted chitosan. Due to the grafting of TMSPM, the crystallinity of chitosan derivatives was found to be destroyed. The solubility of the grafted chitosan in water was improved. The effects of reaction conditions such as initiator concentration, monomer concentration, reaction temperature and reaction time were studied by determining the grafting parameters such as grafting and grafting efficiency. Under optimum conditions, the grafting parameters were achieved as 1440 and 97%, respectively.  相似文献   
79.
For the first time, N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) was prepared through a fast, easy and efficient method with the assistance of microwave irradiation, and the quaternized chitosan was also degraded via the microwave irradiation. A comparative study was performed by using the conventional heating method to prepare HTCC. The structure and property of the quaternized chitosan obtained by these two methods were characterized by GPC, XRD, FTIR, NMR, TG and elemental analysis. It was shown that quaternized chitosan was successfully prepared within 50 min via microwave irradiation method, while a much longer time of 6–7 h was needed with the conventional heating method. The substitutions both occurred on the C2 position of chitosan with the two different methods, and their HTCC products had weight average similar molecular weight (Mw), structure and thermal stability. The HTCC prepared by the microwave irradiation method had a little lower degree of substitution (DS) than those prepared via conventional heating with the same mole ratio (6:1) of the intermediate to chitosan. The degradation study showed that the Mw of HTCC decreased rapidly from 4.6 × 105 to 1.1 × 105 in 1 h under microwave irradiation, while it only decreased from 4.6 × 105 to 2.1 × 105in 1 h through conventional heating degradation. These results revealed that microwave irradiation is a more efficient and environment-friendly way to obtain the water-soluble chitosan derivatives and their degraded products.  相似文献   
80.
The paper presents the experimental studies regarding synthesis and characterization of hydrogels based on gellan (Gel)/chitosan (CS) and collagen (Col), obtained by crosslinking with glutaraldehyde (GLA). The influence of the polysaccharide content and GLA ratio on the final composition and swelling characteristics was evaluated. Hydrogels swelling analysis, in distilled water and phosphate buffer (PBS, pH 7.2) has shown higher swelling degrees at increased concentration of polysaccharide into hydrogels. In vitro release of pilocarpine has demonstrated the possibility to use gellan-collagen and chitosan-collagen hydrogels as ophthalmic drug delivery matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号